skip to main content


Search for: All records

Creators/Authors contains: "Wenk, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Computing Fréchet distance between two curves takes roughly quadratic time. The only strongly subquadratic time algorithm has been proposed in [7] for c-packed curves. In this paper, we show that for curves with long edges the Fréchet distance computations become easier. Let P and Q be two polygonal curves in Rd with n and m vertices, respectively. We prove three main results for the case when all edges of both curves are long compared to the Fréchet distance between them: (1) a linear-time algorithm for deciding the Fréchet distance between two curves, (2) an algorithm that computes the Fréchet distance in O((n + m) log(n + m)) time, and (3) a linear-time [EQUATION]-approximation algorithm for approximating the Fréchet distance between two curves. 
    more » « less
  2. We propose a new approach for constructing the underlying map from trajectory data. Our algorithm is based on the idea that road segments can be identified as stable subtrajectory clusters in the data. For this, we consider how subtrajectory clusters evolve for varying distance values, and choose stable values for these. In doing so we avoid a global proximity parameter. Within trajectory clusters, we choose representatives, which are combined to form the map. We experimentally evaluate our algorithm on vehicle and hiking tracking data. These experiments demonstrate that our approach can naturally separate roads that run close to each other and can deal with outliers in the data, two issues that are notoriously difficult in road network reconstruction. 
    more » « less